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W
avelet theory was an immensely

popular research area in the

1990s that synthesized ideas from

mathematics, physics, electrical en-

gineering, and computer science. In

mathematics, the subject attracted researchers

from areas such as real and harmonic analysis, sta-

tistics, and approximation theory, among others.

Applications of wavelets abound today—perhaps

the most significant contributions of wavelets can

be found in signal processing and digital image

compression. As the basic tenets of wavelet theory

were established, they became part of graduate

school courses and programs, but it is only in

the last ten years that we have seen wavelets

and their applications being introduced into the

undergraduate curriculum.

The introduction of the topic to undergrad-

uates is quite timely—most of the foundational

questions posed by wavelet researchers have been

answered, and several current applications of

wavelets are firmly entrenched in areas of image

processing. Several authors [7, 2, 8, 14] have writ-

ten books in which they present the basic results

of wavelet theory in a manner that is accessible

to undergraduates. Others have authored books

[15, 13, 1, 9] that include applications as part of

their presentation.
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In much the same way that wavelet theory

is the confluence of several mathematical disci-

plines, we have discovered that the discrete wavelet

transformation is an ideal topic for a modern un-

dergraduate class—the derivation of the discrete

wavelet transformation draws largely from calcu-

lus and linear algebra, provides a natural conduit

to Fourier series and discrete convolution, and

allows near-immediate access to current appli-

cations. Students learn about signal denoising,

edge detection in digital images, and image com-

pression, and use computer software in both

the derivation and implementation of the dis-

crete wavelet transformation. In the process of

investigating applications, students learn how

the application often drives the development of

mathematical tools. Finally, the design of more ad-

vanced wavelet filters allows the students to gain

experience “working in the transform domain”

and provides motivation for several important

concepts from an undergraduate real analysis

class.

In what follows, we outline the basic devel-

opment of discrete wavelet transformations and

discuss their connection with Fourier series, con-

volution, and filtering. In the process, we illustrate

the application of discrete wavelet transforma-

tions to o1ir



The Discrete Haar Wavelet Transformation
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Figure 1. A 320 x 512 digital grayscale image, the product W̃MAW̃MAW̃M A



Figure 3. The wavelet transform of a digital image of Helaman Ferguson’s Four Canoes is shown
at the top left. The portion framed in blue is enlarged and transmitted. Next, the portion of the
transform outlined in yellow is transmitted and, with B4B4B4, inverted and enlarged to create the
image at top right. This process is repeated for the green, red, and brown portions of the
transform to progressively create a sequence of images whose resolution increases by a factor of
two at each step. The original image, outlined in brown, is at bottom right.

B4, the fourth iteration averages portion of the

transform, could serve as a thumbnail image for

the original. If a user requests the original image,

we could first transmit B4 and then progressively

send detail portions at each iterative level. The

recipient can apply the inverse transform as detail

portions are received to sequentially produce a

higher-resolution version of the original image.

Figure 3 illustrates the process.

Equation (2) tells us that the discrete Haar

wavelet transformation is almost orthogonal. In-
deed, if we define WN =

√
2W̃N , then W T

N = W−1
N ,
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y is a vector whose elements are yk = (−1)k, k ∈ Z.
Then h ∗ x = √

2 x and h ∗ y is the bi-infinite
zero vector. Thus h is an example of a lowpass
filter—it passes low-frequency signals through
largely unchanged but attenuates the amplitudes
of high-frequency data. In a similar manner we
see that g ∗ x is the bi-infinite zero vector and
g ∗ y = √2y. Here g is an example of a highpass
filter—it allows high-frequency signals to pass
largely unchanged but attenuates the amplitudes
of low-frequency data. Thus in filtering terms, the
discrete Haar wavelet transform is constructed by

applying a lowpass filter and a highpass filter to
the input data, downsampling both results, and
then appropriately truncating the downsampled
vectors. We will learn that all discrete wavelet
transforms are built from a lowpass (scaling) filter
h and a highpass (wavelet ) filter. Fourier series are
valuable tools for constructing these filters.

Fourier Series and Discrete Wavelet
Transformations
A course on discrete wavelet transformations is



h and g



Figure 5. |H(ω)||H(ω)||H(ω)| for the length four
Daubechies scaling filter.

for n ∈ Z, and

(20) A(ω)B(ω)+A(ω+π)B(ω+π) = 0

if and only if

(21)
∑

k∈Z
akbk−2n = 0

for all n ∈ Z.

The proof of this theorem is straightforward.
Note that equations (19) and (21) guarantee
orthogonality of the matrix WN .

Suppose H(ω) satisfies (18). If we take

(22) G(ω) = −eiLωH(ω+π),

then G(ω) satisfies (18), and H(ω), G(ω) satisfy
(20). It is an easy exercise to show that the Fourier
coefficients of G(ω) are gk = (−1)kh1−k, k ∈ Z.

The condition H′(π) = 0 leads naturally to the

following generalization: If we want to produce
longer scaling filters h, each time we increase the
filter length by two, we require an additional deriv-
ative condition at π . For example, the Daubechies



Biorthogonal Scaling Filters

Fortunately, there is a way to deal with the wrap-

ping row problem, and that is to develop filters

that are symmetric.

An odd-length filter h is called symmetric if hk =
h−k, while an even-length filter is called symmetric

if hk = h1−k. Daubechies [5] proved that the only

symmetric, finite length, orthogonal filter is the

Haar filter, and we have already discussed some

of its limitations. How can we produce symmetric

filters while preserving some of the desirable

properties of orthogonal filters? These desirable

properties are finite length (computational speed),

orthogonality (ease of inverse), and the ability to

produce a good approximation of the original data

with the scaling filter. Since the inverse need only

be computed once, it was Daubechies’s idea to

relinquish orthogonality and to construct instead

a discrete biorthogonal wavelet transformation.

The idea is to construct two sets of filters

instead of one. In other words, we construct two

wavelet transform matrices W̃N and WN so that

W̃



insist that both scaling filters be symmetric. Let’s

look at an example.

Example 1. Suppose we want h̃ to be a symmetric,

length three, lowpass filter h̃ = [h̃−1, h̃0, h̃1]T =
[h̃1, h̃0, h̃1]T . We seek two numbers h̃0, h̃1 so that
H̃(0) = h̃1 + h̃0 + h̃1 =

√
2 and H̃(π) = −h̃1 + h̃0 −

h̃1 = 0. The filter1 h̃ we seek is

[h̃−1, h̃0, h̃1]T =
√

2

4
[1, 2, 1]T .

To find a symmetric filter h, we must satisfy

the biorthogonality condition (25), together
with the lowpass constraints H(0) = √

2 and

H(π) = 0. It turns out that h must have an

odd length of 5, 9, 13





elements of a/(d) are built from the odd (even)
elements of v


